解不等式
(本小题满分14分) 椭圆与直线相交于两点,且 (为原点). (1)求证:为定值;(2)若离心率,求椭圆长轴的取值范围。
(本小题满分12分) 已知抛物线以原点为顶点,以轴为对称轴,焦点在直线上. (1)求抛物线的方程;(2)设是抛物线上一点,点的坐标为,求的最小值(用表示),并指出此时点的坐标。
(本小题满分12分) 已知两点满足条件的动点P的轨迹是曲线E,直线l:y= kx-1与曲线E交于A、B两个不同点。 (1)求k的取值范围;(2)如果求直线l的方程.
(本小题满分12分) 已知A、B两点的坐标分别是(-1,0)、(1,0),直线相交于点,且它们的斜率之积为,求点的轨迹方程并判断轨迹形状。
(本小题满分12分) 求适合下列条件的圆锥曲线方程: (1).长轴长是短轴长的3倍,经过点(3,0)的椭圆标准方程。 (2).已知双曲线两个焦点的坐标为,双曲线上一点P到两焦点的距离之差的绝对值等于6,求双曲线标准方程. (3).已知抛物线的顶点在原点,准线与其平行线x=2的距离为3,求抛物线标准方程.