(本小题满分14分)已知函数(是常数).(1)设,、是函数的极值点,试证明曲线关于点对称;(2)是否存在常数,使得,恒成立?若存在,求常数的值或取值范围;若不存在,请说明理由.(注:,对于曲线上任意一点,若点关于的对称点为,则在曲线上.)
(本小题满分12分)已知函数f(x)=log3. (1)求函数f(x)的定义域. (2)判断函数f(x)的奇偶性. (3)当x∈时,函数g(x)=f(x),求函数g(x)的值域.
(本小题满分12分)已知函数. (1)求函数的最小正周期; (2)求函数的最大值及最小值; (3)写出的单调递增区间.
(本小题满分10分)设是等差数列,是各项都为正数的等比数列,且,,. (1)求,的通项公式; (2)求数列,的前项和和
已知. (1)解不等式; (2)若关于的不等式对任意的恒成立,求的取值范围.
在直角坐标平面内,直线l过点P(1,1),且倾斜角α=.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sinθ. (1)求圆C的直角坐标方程; (2)设直线l与圆C交于A、B两点,求|PA|·|PB|的值.