学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查。图(1)和图(2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率.
在函数中,我们规定:当自变量增加一个单位时,因变量的增加量称为函数的平均变化率.例如,对于函数y=3x+1,当自变量x增加1时,因变量y=3(x+1)+1=3x+4,较之前增加3,故函数y=3x+1的平均变化率为3. (1)①列车已行驶的路程s(km)与行驶的时间t(h)的函数关系式是s=300t,该函数的平均变化率是;其蕴含的实际意义是; ②飞机着陆后滑行的距离y(m)与滑行的时间x(s)的函数关系式是y=-1.5x2+60x,求该函数的平均变化率; (2)通过比较(1)中不同函数的平均变化率,你有什么发现; (3)如图,二次函数y=ax2+bx+c的图像经过第一象限内的三点A、B、C,过点A、B、C作x轴的垂线,垂足分别为D、E、F,AM⊥BE,垂足为M,BN⊥CF,垂足为N,DE=EF,试探究△AMB与△BNC面积的大小关系,并说明理由.
小明设计了一个“简易量角器”:如图,在△ABC中,∠C=90°,∠A=30°,CA=30 cm,在AB边上有一系列点P1,P2,P3…P8,使得∠P1CA=10°,∠P2CA=20°,∠P3CA=30°,…∠P8CA=80°. (1)求P3A的长(结果保留根号); (2)求P5A的长(结果精确到1 cm,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20,≈1.7); (3)小明发现P1,P2,P3…P8这些点中,相邻两点距离都不相同,于是计划用含45°的直角三角形重新制作“简易量角器”,结果会怎样呢?请你帮他继续探究.
一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求出发后第一小时内的行驶速度.
如图,正方形网格中每个小正方形的边长均为1,△ABC的三个顶点都在格点上,现将△ABC绕着格点O顺时针旋转90°. (1)画出△ABC旋转后的△A'B'C'; (2)求点C旋转过程中所经过的路径长; (3)点B'到线段A'C'的距离为多少.
如图,在平面直角坐标系中,四边形ABCD为矩形,BC平行于x轴,AB=6,点A的横坐标为2,反比例函数y=的图像经过点A、C. (1)求点A的坐标; (2)求经过点A、C所在直线的函数关系式. (3)请直接写出AD长.