已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.
如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒. (1)求A、C两点的坐标; (2)连接PA,用含t的代数式表示△POA的面积; (3)当P在线段BO上运动时,在y轴上是否存在点Q,使△POQ与△AOC全等?若存在,请求出t的值并直接写出Q点坐标;若不存在,请说明理由.
杨佳明周日骑车从家里出发,去图书馆看书, (1)若杨佳明骑车行驶的路程y(km)与时间t(min)的图象如图1所示,请说出线段AB所表示的实际意义: ;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时行驶的路程y(km)与时间t(min)的图象; (2)在整个骑行过程中,若杨佳明离家的距离y(km)与时间t(min)的图象如图2所示,请说出线段AB所表示的实际意义: ;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时离家的距离y(km)与时间t(min)的图象; (3)在整个骑行过程中,若杨佳明骑车的速度y(km/min)与时间t(min)的图象如图3所示,那么当她离家最远时,时间是在第 分钟,并求出她在骑行30分钟时的路程是 .
这是某单位的平面示意图,已知大门的坐标为(﹣3,0),花坛的坐标为(0,﹣1). (1)根据上述条件建立平面直角坐标系; (2)建筑物A的坐标为(3,1),请在图中标出A点的位置. (3)建筑物B在大门北偏东45°的方向,并且B在花坛的正北方向处,请直接写出B点的坐标. (4)在y轴上找一点C,使△ABC是以AB腰的等腰三角形,请直接写出点C的坐标.
在平面直角系中,已知A(﹣2,0),B(0,4),C(3,6); (1)当D(6,0)时,求四边形ABCD的面积; (2)在x轴上找一点P,使△PBC的周长最小,并求出此时△PBC的周长.
已知y=y1+y2,y1与x成正比例,y2与x﹣1成正比例,并且当x=2时,y=6;当x=3时,y=5,求y与x的函数关系式.