某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m。(1)若养鸡场面积为168m2,求鸡场的一边AB的长。(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?(3)养鸡场面积能达到205m2吗?如果能,请给出设计方案,如果不能,请说明理由。
如图,正方形网格中,△ABC为格点三角形(顶点都是格点), 将△ABC绕点A按逆时针方向旋转90°得到.(1)在正方形网格中,作出;(不要求写作法)(2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形, 然后求出它的面积.(结果保留)
如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G,且∠AGO=30°。 (1)点C、D的坐标分别是C(),D(); (2)求顶点在直线y=上且经过点C、D的抛物线的解析式; (3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E。平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题: (1)求y与x的关系式; (2)当x取何值时,y的值最大? (3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分 别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字, 和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B 布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐 标为(x,y). (1)用列表或画树状图的方法写出点Q的所有可能坐标; (2)求点Q落在直线y=-X-2上的概率
如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m. (1)请写出抛物线的开口方向、顶点坐标、对称轴. (2)请求出球飞行的最大水平距离. (3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式