(本小题满分12分)如图1,在Rt中,,.,将沿折起到的位置,使,如图2.(Ⅰ)求证: 平面;(Ⅱ)若,求平面与平面所成二面角的大小.
已知函数(其中)的图象与x轴在原点右侧的第一个交点为N(6,0),又(1)求这个函数解析式(2)设关于x的方程在[0,8]内有两个不同根,求的值及k的取值范围。
设排球队A与B进行比赛,规定若有一队胜四场,则为获胜队,已知两队水平相当(1)求A队第一、五场输,第二、三、四场赢,最终获胜的概率;(2)若要决出胜负,平均需要比赛几场?
(1)解关于x的不等式(2)记a>0时(1)中不等式的解集为A,集合B=,若恰有3个元素,求a的取值范围。
设, (1)若,为与的夹角,求。 (2)若与夹角为60o,那么t为何值时的值最小?
5. 已知数列,其中是首项为1,公差为1的等差数列;是公差为的等差数列;是公差为的等差数列().(1)若,求;(2)试写出关于的关系式,并求的取值范围;(3)续写已知数列,使得是公差为的等差数列,……,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?