设,满足. (Ⅰ)求函数的单调递增区间;(Ⅱ)设三内角所对边分别为且,求在上的值域.
从某校参加2012年全国高中数学联赛预赛的450名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据. (1)根据表中已知数据,你认为在①、②、③处的数值分别为,,. (2)补全在区间 [70,140] 上的频率分布直方图; (3)若成绩不低于100分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?
已知的边所在直线的方程为,满足, 点在所在直线上且. (Ⅰ)求外接圆的方程; (Ⅱ)一动圆过点,且与的 外接圆外切,求此动圆圆心的轨迹的方程; (Ⅲ)过点斜率为的直线与曲线交于相异的两点,满足,求的取值范围.
设函数. (Ⅰ)若,求的最小值; (Ⅱ)若,讨论函数的单调性.
如图,PA垂直于矩形ABCD所在的平面,,E、F分别是AB、PD的中点. (Ⅰ)求证:平面PCE 平面PCD; (Ⅱ)求三棱锥P-EFC的体积.
数列的各项均为正数,为其前项和,对于任意,总有成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前项和.