如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C. (1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明; (2)当QP⊥AB时,△QCP的形状是 三角形; (3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是 三角形.
根据要求画出下列立体图形的视图。
如图,要把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的,请说明理由.
已知:如图,△ABC中,∠BAC=90°,分别以AB、BC为边作正方形ABDE和正方形BCFG,延长DC、GA交于点P. 求证:PD⊥PG.
如图,将矩形ABCD折叠,使顶点B与D重合,折痕为EF,连接BE、DF.(1)四边形BEDF是什么四边形?为什么?(2)若AB=6cm,BC=8cm,求折痕EF的长.
某公司为了扩大经营,决定购进6台机器用于生产某种零件.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产零件的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.
(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于190个,那么为了节约资金应选择哪种方案?