一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a. (1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为 ,周长为 ; (2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为 ,周长为 ; (3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD. (1)P是上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由. (2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.
如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,求tan∠BPD的值
如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC=∠CAD,求弦AC的长.
如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.
如图,点A是半圆上的三等分点,B是的中点,P是直径MN上一动点.⊙O的半径为1,问P在直线MN上什么位置时,AP+BP的值最小?并求出AP+BP的最小值.