(本小题满分10分)中,边上的中线所在直线方程为,的平分线方程为.(1)求顶点的坐标;(2)求直线的方程.
如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。(1)求证:B1C1⊥平面ABB1A1;(2)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由。
如图,从边长为2a的正方形铁皮的四个角各截去一个边长为x的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度x与底面正方形的边长的比不超过常数t,问:x取何值时,长方体的容积V有最大值?
在锐角三角形ABC中,∠A,∠B,∠C的对边分别为a,b,c,且b2+c2=bc+a2(1)求∠A;(2)若a=,求b2+c2的取值范围。
(本题满分16分)设函数 R 的最小值为-a,两个实根为、 .(1)求的值;(2)若关于的不等式解集为,函数在上不存在最小值,求的取值范围;(3)若,求b的取值范围。
(本题满分16分)已知函数.(1)判断并证明的奇偶性;(2)求证:;(3)已知a,b∈(-1,1),且,,求,的值.