(本小题满分12分)设上的两点,已知向量,,若且椭圆的离心率短轴长为2,为 坐标原点. (Ⅰ)求椭圆的方程; (Ⅱ)若直线过椭圆的焦点(0,c),(c为半焦距),求直线的斜率的值; (Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
若实数满足,则的最小值为_______.
(本小题满分14分)已知函数的导函数. (1)若,不等式恒成立,求a的取值范围; (2)解关于x的方程; (3)设函数,求时的最小值.
(本小题满分14分)已知直线上有一个动点,过点作直线垂直于轴,动点在上,且满足(为坐标原点),记点的轨迹为. (1)求曲线的方程; (2)若直线是曲线的一条切线,当点到直线的距离最短时,求直线的方程.
(本小题满分14分)已知递增等差数列中的是函数的两个零点.数列满足,点在直线上,其中是数列的前项和. (1)求数列和的通项公式; (2)令,求数列的前n项和.
(本小题满分14分)如图,在直三棱柱中,,、分别是,的中点. (1)求证:∥平面; (2)求证:平面平面; (3)若,,求三棱锥的体积.