(本小题满分16分) 已知椭圆两焦点坐标分别为,,一个顶点为.(Ⅰ)求椭圆的标准方程;(Ⅱ)是否存在斜率为的直线,使直线与椭圆交于不同的两点,满足. 若存在,求出的取值范围;若不存在,说明理由.
如图所示,四棱锥中,底面是边长为的正方形,侧棱底面,且,是的中点. (1)证明:平面; (2)求三棱锥的体积.
已知函数. (1)求函数在点处的切线方程; (2)求函数的单调区间.
已知数列满足,. (1)求的值,由此猜测的通项公式,并证明你的结论; (2)证明:.
已知函数(为小于的常数). (1)当时,求函数的单调区间; (2)存在使不等式成立,求实数的取值范围.
如图,四棱锥中,,,,平面⊥平面,是线段上一点,,. (1)证明:⊥平面; (2)若,求直线与平面所成角的正弦值.