设.(1)令,求的单调区间;(2)若当时,恒成立,求实数的取值范围;
(本小题满分12分)已知函数(1)求函数的单调区间;(2)当时,,求实数的取值范围
已知抛物线的焦点为,点关于坐标原点对称,以为焦点的椭圆,过点(Ⅰ)求椭圆的标准方程;(Ⅱ)设,过点作直线与椭圆交于两点,且,若,求的最小值。
(本小题满分12分)某校为了响应《中共中央国务院关于加强青少年体育增强青少年体质的意见》精神,落实“生命—和谐”教育理念和阳光体育行动的现代健康理念,学校特组织“踢毽球”大赛,某班为了选出一人参加比赛,对班上甲乙两位同学进行了次测试,且每次测试之间是相互独立.成绩如下:(单位:个/分钟)
(1)用茎叶图表示这两组数据 (2)从统计学的角度考虑,你认为选派那位学生参加比赛合适,请说明理由? (3)若将频率视为概率,对甲同学在今后的三次比赛成绩进行预测,记这三次成绩高于个/分钟的次数为,求的分布列及数学期望. (参考数据:, )
如图,一简单几何体的一个面内接于圆,分别是的中点,是圆的直径,四边形为平行四边形,且平面.(1)求证:平面;(2)若AC=BC=BE=2,求二面角O-CE-B的余弦值.
(本小题满分12分) 已知函数(,)图象的相邻两对称轴间的距离为,若将函数的图象向左平移个单位后图象关于轴对称.(1)求使成立的的取值范围;(2)设,其中是的导函数,若,且,求的值.