(本题满分14分) 本题有2个小题,第一小题满分6分,第二小题满分8分。 如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°. (1)证明:平面PAB与平面PCD的交线平行于底面; (2)求cos∠COD.
(本小题12分)解不等式
(本题满分14分) 已知正项数列满足,, 令. (Ⅰ) 求证:数列为等比数列; (Ⅱ) 记为数列的前项和,是否存在实数,使得不等式对恒成立?若存在,求出实数的取值范围;若不存在,请说明理由.
已知函数 (I)求函数的单调区间与极值; (II)若对于任意恒成立,求实数a的取值范围。
(本小题满分13分)已知椭圆()的一个焦点坐标为,且长轴长是短轴长的倍. (Ⅰ)求椭圆的方程; (Ⅱ)设为坐标原点,椭圆与直线相交于两个不同的点,线段的中点为,若直线的斜率为,求△的面积.
本题满分13分如图,三角形ABC中,AC=BC=,ABED是边长为1 的正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点. (I)求证:GF//底面ABC; (Ⅱ)求证:AC⊥平面EBC; (Ⅲ)求几何体ADEBC的体积V.