(本小题满分14分)已知函数是奇函数,且满足(1)求实数、的值;(2)试证明函数在区间单调递减,在区间单调递增;(3)是否存在实数同时满足以下两个条件:①不等式对恒成立;②方程在上有解.若存在,试求出实数的取值范围,若不存在,请说明理由.
(本小题满分12分)已知向量,,函数.(1)求函数的最小正周期和值域;(2)在中,分别是角的对边,且,,,且,求
在△ABC中,角A、B、C所对的边分别是a、b、c,则(其中S△ABC为△ABC的面积).(1)求sin2;(2)若b=2,△ABC的面积S△ABC=3,求a.
(本小题满分12分)如图,已知椭圆C:,经过椭圆C的右焦点F且斜率为k(k≠0)的直线l交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.(1)是否存在k,使对任意m>0,总有成立?若存在,求出所有k的值; (2)若,求实数k的取值范围.
(本小题满分12分)已知函数(Ⅰ)求的极值;(Ⅱ)若函数的图象与函数=1的图象在区间上有公共点,求实数a的取值范围.
(本题满分13分)如图,棱柱ABCD—A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°. (Ⅰ)证明:BD⊥AA1; (Ⅱ)求二面角D—A1A—C的平面角的余弦值; (Ⅲ)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.