如图,四棱锥中,底面ABCD为菱形,,Q是AD的中点.(Ⅰ)若,求证:平面PQB平面PAD;(Ⅱ)若平面APD平面ABCD,且,点M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.
已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.
长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,,点P的轨迹为曲线C.(1)以直线AB的倾斜角为参数,求曲线C的参数方程;(2)求点P到点距离的最大值.
如图,E是圆O内两弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.求证:(1);(2)EF//CB.
已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.(1)求抛物线E的方程;(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
已知函数,. (1)当时,求的最小值; (2)若,求a的取值范围.