某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1050元,问第二周每个旅游纪念品的销售价格为多少元?
已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC. (1)求证:∠PCA=∠PBC; (2)利用(1)的结论,已知PA=3,PB=5,求PC的长.
我州某校计划购买甲、乙两种树苗共1000株用以绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲,乙两种树苗成活率分别是90%和95%. (1)若购买这种树苗共用去28000元,则甲、乙两种树苗各购买多少株? (2)要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株? (3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上). (1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1; (2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2; (3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
实验与探究: 三角点阵前n行的点数计算 如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点… 容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗? 如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+…+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系 前n行的点数的和是1+2+3+…+(n﹣2)+(n﹣1)+n,可以发现. 2×[1+2+3+…+(n﹣2)+(n﹣1)+n] =[1+2+3+…+(n﹣2)+(n﹣1)+n]+[n+(n﹣1)+(n﹣2)+…3+2+1] 把两个中括号中的第一项相加,第二项相加…第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于n(n+1),于是得到 1+2+3+…+(n﹣2)+(n﹣1)+n=n(n+1) 这就是说,三角点阵中前n项的点数的和是n(n+1) 下列用一元二次方程解决上述问题 设三角点阵中前n行的点数的和为300,则有n(n+1) 整理这个方程,得:n2+n﹣600=0 解方程得:n1=24,n2=25 根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300. 请你根据上述材料回答下列问题: (1)三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理. (2)如果把图中的三角点阵中各行的点数依次换成2、4、6、…、2n、…,你能探究处前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能使600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF. (1)试说明AC=EF; (2)求证:四边形ADFE是平行四边形.