一只蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记为“+”,向负半轴运动记为“—”,从开始到结束爬行的各段路程(单位:cm)依次为+7,—5,—10,—8,+9,—6,+12,+4。(1)若A点在数轴上表示的数为—2,则蜗牛停在数轴上何处,请通过计算加以说明。(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?
君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题: (1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图; (2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?
如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE. (1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点; (2)请直接写出△AEF与四边形ABCD重叠部分的面积.
先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.
在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于A(﹣3,0),B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A. (1)求一次函数y=kx+b的解析式; (2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n的值; (3)当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=1,ED=2. (1)求证:∠ABC=∠D; (2)求AB的长; (3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.