首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 1243

请仔细阅读以下材料:
已知是定义在上的单调递增函数.
求证:命题“设,若,则”是真命题.
证明 :因为,由
又因为是定义在上的单调递增函数,
于是有.     ①
同理有.     ②
由①+ ②得
故,命题“设,若,则”是真命题.
请针对以上阅读材料中的,解答以下问题:
(1)试用命题的等价性证明:“设,若,则:”是真命题;
(2)解关于的不等式(其中).

登录免费查看答案和解析
相关知识点

请仔细阅读以下材料:已知是定义在上的单调递增函数.求证:命题