请仔细阅读以下材料:已知是定义在上的单调递增函数.求证:命题“设,若,则”是真命题.证明 :因为,由得.又因为是定义在上的单调递增函数,于是有. ①同理有. ②由①+ ②得.故,命题“设,若,则”是真命题.请针对以上阅读材料中的,解答以下问题:(1)试用命题的等价性证明:“设,若,则:”是真命题;(2)解关于的不等式(其中).
用半径为6cm的圆形铁皮剪出一个圆心角为的扇形,制成一个圆锥形容器,扇形的圆心角多大时,容器的容积最大.
已知曲线与在第一象限内交点为P (1)求过点P且与曲线相切的直线方程; (2)求两条曲线所围图形(如图所示阴影部分)的面积S.
设。 (1)求的值; (2)归纳{}的通项公式,并用数学归纳法证明。
用红、黄、蓝、白、黑五种颜色在田字形的四个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用。 (1)从中任选四种颜色涂色,有多少种不同的涂法? (2)按要求任意选色涂,共有多少种不同的涂法?
求证:(1); (2) +>+。