已知椭圆的中心在坐标原点,焦点在轴上,椭圆右焦点,且(1)求椭圆的标准方程;(2)若直线:与椭圆相交于,两点(都不是顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
已知向量,. (I)若,求的值; (II)在中,角的对边分别是,且满足,求函数的取值范围.
设函数. (I)解不等式;(II)求函数的最小值.
如图,已知C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G. (1)求证:CG是⊙O的切线; (2)若FB=FE=2,求⊙O的半径.
在中, ,平分交于点. 证明:(1) (2)
设p:实数x满足,其中,实数满足 (Ⅰ)若且为真,求实数的取值范围; (Ⅱ)若p是q的必要不充分条件,求实数的取值范围