已知椭圆的中心在坐标原点,焦点在轴上,椭圆右焦点,且(1)求椭圆的标准方程;(2)若直线:与椭圆相交于,两点(都不是顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
已知为实数,(1)若,求在上最大值和最小值;(2)若在和上都是递增的,求的取值范围。
设a为实数, 函数 (Ⅰ)求的极值.(Ⅱ)当a在什么范围内取值时,曲线轴仅有一个交点.
已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.
已知倾斜角为的直线L经过抛物线的焦点F,且与抛物线相交于、两点,其中坐标原点.(1)求弦AB的长; (2)求三角形的面积.
设数列的前n项和为,点均在直线上. (1)求数列的通项公式;(2)设,试证明数列为等比数列.