当a>0且x>0时,因为,所以,从而(当x=时取等号).记函数,由上述结论可知:当x=时,该函数有最小值为2(1)已知函数y1=x(x>0)与函数,则当x= 时,y1+y2取得最小值为 (2)已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>−1),求的最小值,并指出取得该最小值时相应的x的值.
(本小题10分)已知,且,求值.
(本小题8分) 已知且,求与的夹角的取值范围.
(本题满分18分)第一题满分5分,第二题满分5分,第三题满分8分. 如图,有一公共边但不共面的两个三角形ABC和A1BC被一平面DEE1D1所截,若平面DEE1D1分别交AB,AC,A1B,A1C于点D,E,D1,E1。 (1)讨论这三条交线ED,CB, E1 D1的关系。 (2)当BC//平面DEE1D1时,求的值; (3)当BC不平行平面DEE1D1时, 的值变化吗?为什么?
第一题满分4分,第二题满分6分,第三题满分6分. 已知动圆过定点P(1,0),且与定直线相切。 (1)求动圆圆心的轨迹M的方程; (2)设过点P,且倾斜角为的直线与曲线M相交于A,B两点,A,B在直线上的射影是。求梯形的面积; (3)若点C是(2)中线段上的动点,当△ABC为直角三角形时,求点C的坐标。
第一题满分4分,第二题满分4分,第三题满分6分. 甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将4张扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张。 (1)设分别表示甲、乙抽到的牌的数字(方片4用4’表示,红桃2,红桃3,红桃4分别用2,3,4表示),写出甲乙二人抽到的牌的所有情况; (2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少? (3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;若甲抽到的牌的牌面数字不比乙大,则乙胜。你认为此游戏是否公平,说明你的理由。