((本小题满分12分)如图所示,多面体中,是梯形,,是矩形,平面平面,,。(1)求证:平面;(2)若是棱上一点,平面,求;(3)求二面角的平面角的余弦值。
极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,求证:.
如图,设AB,CD为⊙O的两直径,过B作PB垂直于AB,并与CD延长线相交于点P,过P作直线与⊙O分别交于E,F两点,连结AE,AF分别与CD交于G、H(Ⅰ)设EF中点为,求证:O、、B、P四点共圆(Ⅱ)求证:OG =OH.
已知,,在处的切线方程为(Ⅰ)求的单调区间与极值;(Ⅱ)求的解析式;(III)当时,恒成立,求的取值范围.
已知为抛物线的焦点,抛物线上点满足(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.
如图,已知三棱锥中,,,为中点,为 中点,且为正三角形。(Ⅰ)求证://平面;(Ⅱ)求证:平面⊥平面;(III)若,,求三棱锥的体积.