已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q两点,顶点为N(0,6),且与x轴交于A、B两点.(1)求点P的坐标;(2)求抛物线解析式;(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).
在实数范围内定义运算“⊕”,其法则为a⊕b=a2-b2,求方程(4⊕3)⊕x=24的解.
解方程x2+4x+1=0.
已知x1、x2是方程2x2+3x-1=0的两个实数根,不解方程,求①(x1-x2)2;②+的值.
若关于x的一元二次方程x2+4x+2k=0有实数根,求k的取值范围及k的非负整数值.
解方程2(x-3)=3x(x-3).