已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q两点,顶点为N(0,6),且与x轴交于A、B两点.(1)求点P的坐标;(2)求抛物线解析式;(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).
如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:①AD=CB,②AE=CF,③∠B=∠D,④AD∥BC.请用其中三个作为已知条件,余下一个作为求证结论,编一道数学问题,并写出解答过程: 已知条件: , , ; 求证结论: . 证明:
已知△PQR在直角坐标系中的位置如图所示: (1) 求出△PQR的面积; (2) 画出△P′Q′R′,使△P′Q′R′与△PQR关于y轴对称,写出点P′、Q′、R′的坐标; (3)连接PP′,QQ′,判断四边形QQ′P′P的形状,求出四边形QQ′P′P的面积.
如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高.AD和EF有什么关系?请说明理由.
需要在高速公路旁边修建一个飞机场,使飞机场到A,B两个城市的距离之和最小,请作出机场的位置.
如图,在△ABC中,AB=AC,∠A=30º,DE垂直平分AC于E,连结CD,求∠DCB的度数.