如图1,把一张长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.(1)求证:FB=FD;(2)如图2,连接AE,求证:AE∥BD;(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH垂直平分BD。
甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行.乙车出发2h休息.与甲车相遇.继续行驶.设甲、乙两车与B地的距离y(km)与行驶的时间x(h)之间的函数图象如图所示. (1)写出甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式 ; (2)乙车休息的时间为 ; (3)写出休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式 ;休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式 ; (4)求行驶多长时间两车相距100km.
观察下列一组等式的化简.然后解答后面的 问题:;;… (1)在计算结果中找出规律= (n表示大于0的自然数) (2)通过上述化简过程,可知 (填“>”、“<”或“=”); (3)利用你发现的规律计算下列式子的值:
在一次消防演习中,消防员架起一架25米长的云梯,如图斜靠在一面墙上,梯子底端离墙7米. (1)求这个梯子的顶端距地面有多高? (2)如果消防员接到命令,要求梯子的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?
已知一次函数y=kx-3的图象与正比例函数y=的图象相交于点(-2,a). (1)求出一次函数解析式. (2)点A(x1,y1),B(x2,y2)都在一次函数图象上,若x1<x2,试比较y1与y2的大小.
如图,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上三点. (1)请画出△ABC关于y轴对称的△A1B1C1;并写出B1点的坐标: (2)若将△ABC顶点纵坐标都乘以-1,横坐标不变,得到的△A2B2C2与△ABC有怎样的位置关系: .