如图,扇形OAB的半径OA=r,圆心角∠AOB=90º,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,点M在DE上,DM=2EM,过点C的直线CP交OA的延长线于点P,且∠CPO=∠CDE. (1)试说明:DM=r; (2)试说明:直线CP是扇形OAB所在圆的切线;
(本题满分10分,第(1)小题7分,第(2)小题3分)如图6,矩形纸片ABCD的边长AB=4,AD=2.翻折矩形纸片,使点A与点C重合,折痕分别交AB、CD于点E、F,(1)在图6中,用尺规作折痕EF所在的直线(保留作图痕迹,不写作法),并求线段EF的长; (2)求∠EFC的正弦值.
(本题满分10分)解方程:.
解不等式组:把它的解集在数轴上表示出来,并求它的整数解.
(本题满分14分,第(1)题4分,第(2)题4分,第(2)题6分)在梯形ABCD中,AD//BC,AB⊥AD,AB=4,AD=5,CD=5.E为底边BC上一点,以点E为圆心,BE为半径画⊙E交直线DE于点F.(1)如图,当点F在线段DE上时,设BE,DF,试建立关于的函数关系式,并写出自变量的取值范围; (2)当以CD直径的⊙O与⊙E与相切时,求的值;(3)联接AF、BF,当△ABF是以AF为腰的等腰三角形时,求的值。
(本题满分12分,第(1)、(2)题各6分)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C, D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2.(1)求直线AD和抛物线的解析式;(2)抛物线的对称轴与轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出点Q点的坐标.