已知某种水果的批发单价与批发量的函数关系如图所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.
在“五•一”期间,“佳佳”网店购进A、B两种品牌的服装进行销售,已知B种品牌服装的进价比A种品牌服装的进价每件高20元,2件A种品牌服装与3件B种品牌服装进价共560元.(1)求购进A、B两种品牌服 装的单价;(2)该网站拟以不超过11200元的总价购进这种两品牌服装共100件,并全部售出.其中A种品牌服装的售价为150元/件,B种品牌服装的售价为200元/件,该网站为了获取最大利润,应分别购进A、B两种品牌服装各多少件?所获取的最大利润是多少?
如图,已知矩形ABCD中,E是AB边的中点,连接CE,将△BCE沿直线CE折叠后,点B落在点B′处,连接AB′并延长交CD于点F.(1)求证:四边形AECF是平行四边形;(2)若AB=6,BC=4,求tan∠CB′F的值.
我市某中学为丰富学生的课余生活,提升学生的综合素质,在2014-2015学年七年级开设了足球、舞蹈、书法、信息、科技、生活等六门校本课程.为了解学生对这六门课程的喜爱情况,随即从中抽取部分学生的选择结果进行统计,并绘制了如图1、图2两幅不完整统计图表.请根据图中提供的信息回答下列问题: (1)此次抽取的学生工 人; (2)请补全图1的条形统计图; (3)图2表示“信息”所在扇形的圆心角的度数 ; (4)若该校2014-2015学年七年级共有480人,那么选取的课程是“科技”的学生共有 人.
解不等式组,并写出它的非负整数解.
如图,在平面直角坐标系中,抛物线y=-x2+bx+c与y轴交于点A(0,3),且经过点(5,-2),点B与点A关于对称轴对称,过点B作BC⊥x轴,垂足为C,连结OB.(1)求二次函数的解析式,并求出点B的坐标.(2)把△AOB以每秒1个单位的速度向右平移,得到△PDE,PE交OB于点F,PD交BC于点M,设向右平移运动的时间为t(s).设平移过程中与△OBC重叠部分的面积为S,试探求S 与t的函数关系式,并求当t为何值时,S最大?(3)在(2)的条件下,是否存在某一时刻t,使△OCE为等腰三角形?若存在,求出t;若不存在,请说明理由.