如图,有一块直角三角形纸片,两直角边AC=5cm,BC=12cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD的长.
(本题6分)如右图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=10,求弦AC的长.
(本题6分)请在右侧网格图中画出所给图形绕点O顺时针依次旋转90°、180°、270°后所成的图形.(注意:有阴影部分图形旋转后的对应图形要涂上阴影,不要求写画法)
(本题6分)已知:如右图,AB是⊙O的弦,⊙O的半径为5,OC⊥AB于点D , 交⊙O于点C,且AB = 8,求CD的长.
(本题6分)用配方法解方程:
如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧). 已知点坐标为(,). (1)求此抛物线的解析式; (2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;(3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.