已知点A在数轴上对应的数是a,点B在数轴上对应的数是b,且.现将A、B之间的距离记作,定义.(1)的值(2)的值(3)设点P在数轴上对应的数是x,当时,求x的值;
已知:如图,△ABC是⊙O的内接正三角形,点D是的中点,连接BD并延长BD到点E,使BD=DE,连接CD和DE.(1)求证:△CDE是正三角形.(2)问:△CDE经怎样的变换后能与△ABC成位似图形?请在图中直接画出△CDE变换后的对应三角形△CD'E',并求出△CD'E'与△ABC的位似比.
如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.
如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,将△ABC沿AC边所在直线向右平移x个单位,记平移后的对应三角形为△DEF,连接BE.(1)当x=4时,求四边形ABED的周长;(2)当x为何值时,△BED是等腰三角形?
如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.
已知,在△ABC中,AB=AC.过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.(1)当∠BAC=∠MBN=90°时,①如图a,当θ=45°时,∠ANC的度数为 ;②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.