(本小题满分14分)某商店根据以往某种玩具的销售记录,绘制了日销售量的频率分布直方图,如图所示,将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立(1)估计日销售量的众数;(2)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(3)用表示在未来3天里日销售量不低于100个的天数,求随机变量的分布列,期望及方差.
如图示,边长为4的正方形与正三角形所在平面互相垂直,M、Q分别是PC,AD的中点。 (1)求证: (2)求多面体的体积 (3)试问:在线段AB上是否存在一点N,使面若存在,指出N的位置,若不存在,请说明理由。
在等差数列{}中,=3,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+ S2=12,. (1)求与的通项公式; (2)设数列{}满足,求{}的前n项和.
对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策” 的态度有差异?
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人赞成“楼市限购政策”的概率. (参考公式:,其中.) 参考值表:
△ABC中,角A,B,C所对的边分别为且满足 (Ⅰ)求角C的大小; (Ⅱ)求的最大值,并求取得最大值时的大小.
已知函数. (1)求的单调区间; (2)当时,若方程有两个不同的实根和, (ⅰ)求实数的取值范围; (ⅱ)求证:.