定义:若对定义域内的任意两个,均有成立,则称函数是上的“平缓函数”。1. 判断和的单调性并证明;2. 判断和是否为R上的“平缓函数”,并说明理由;3. 若数列中,总有。
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点是的中点。 (1)求证:; (2)求证://平面.
已知过抛物线的焦点,斜率为的直线交抛物线于()两点,且. (1)求该抛物线的方程; (2)为坐标原点,为抛物线上一点,若,求的值.
已知椭圆,过左焦点F1倾斜角为的直线交椭圆于两点。求:弦AB的长。
已知命题,命题,若是真命题,是假命题,求实数的取值范围。
已知,,若动点满足,点的轨迹为曲线. (Ⅰ)求曲线的方程; (Ⅱ)试确定的取值范围,使得对于直线:,曲线上总有不同的两点关于直线对称.