(本小题满分14分)已知(为常数),曲线在点处的切线与直线垂直.(Ⅰ)求的值及函数的单调区间;(Ⅱ)证明:当时,;(Ⅲ)设,若在上单调递减,求实数的取值范围.
(本小题满分16分)(理科做)在如图所示的几何体中,平面,平面,,,是的中点.建立适当的空间直角坐标系,解决下列问题:⑴求证:;⑵求与平面所成角的大小.
(本小题满分16分) 如图,设椭圆的右顶点与上顶点分别为A、B,以A为圆心,OA为半径的圆与以B为圆心,OB为半径的圆相交于点O、P.(1)求点P的坐标;(2) 若点P在直线上,求椭圆的离心率;(3) 在(2)的条件下,设M是椭圆上的一动点,且点N(0,1)到椭圆上点的最近距离为3,求椭圆的方程.
(本小题满分14分)如图,在四棱锥中,四边形是正方形,平面,,且分别是的中点.⑴求证:平面平面;⑵求三棱锥的体积.
(本小题满分14分)已知过点的圆的圆心为.⑴求圆的方程;⑵若过点的直线被圆截得的弦长为,求直线的方程.
已知函数.(1)若函数是偶函数,求出的实数的值;(2)若方程有两解,求出实数的取值范围;(3)若,记,试求函数在区间上的最大值.