如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1,(只画出图形).作出△ABC关于原点O成中心对称的△A2B2C2,(只画出图形),写出B2 和C2的坐标.
一个二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,求这个函数的关系式.
已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0).求二次函数的解析式.
已知抛物线y=x2+(2m+1)x+m+1,根据下列条件分别求m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为x=1.
如果函数y=a(x﹣1)2+c与函数y=x2+2bx+b2﹣5的顶点相同,且其中一个函数经过点(2,7),求这两个函数的解析式.
如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.