已知椭圆的中心在原点,焦点在x轴上,连接它的四个顶点得到的四边形的面积是4,分别连接椭圆上一点(顶点除外)和椭圆的四个顶点,连得线段所在四条直线的斜率的乘积为,求这个椭圆的标准方程。
如图,已知C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G. (1)求证:CG是⊙O的切线; (2)若FB=FE=2,求⊙O的半径.
在中, ,平分交于点. 证明:(1) (2)
设p:实数x满足,其中,实数满足 (Ⅰ)若且为真,求实数的取值范围; (Ⅱ)若p是q的必要不充分条件,求实数的取值范围
己知△ABC中,AB="AC" , D是△ABC外接圆劣弧上的点(不与点A , C重合),延长BD至E。 (1)求证:AD 的延长线平分; (2)若,△ABC中BC边上的高为, 求△ABC外接圆的面积.
如图所示,圆的直径,为圆周上一点,.过作圆的切线,过作的垂线,分别与直线、圆交于点,求的度数和线段的长。