设满足约束条件: 且的最小值为,则 .
函数的值域是 ;
已知椭圆的中心在原点、焦点在轴上,抛物线的顶点在原点、焦点在轴上.小明从曲线、上各取若干个点(每条曲线上至少取两个点),并记录其坐标(.由于记录失误,使得其中恰有一个点既不在椭圆上,也不在抛物线上,小明的记录如下:
据此,可推断抛物线的方程为_____________.
椭圆有这样的光学性质:从椭圆的一个焦点发出的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形球盘,点是它的两个焦点,长轴长,焦距,静放在点的小球(小球的半径不计)从点沿直线(不与长轴共线)发出,经椭圆壁反弹后第一次回到点时,小球经过的路程为 .
已知定点在抛物线的内部,为抛物线的焦点,点在抛物线上,的最小值为4,则= .
右边框图表示的程序所输出的结果是 .