已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.(1)求数列{an}与{bn}的通项公式;(2)记Tn=a1b1+a2b2+…+anbn,n∈N*,证明Tn-8=an-1bn+1(n∈N*,n≥2).
(本小题共14分)已知动点在角的终边上. (1)若,求实数的值; (2)记,试用将S表示出来.
已知椭圆的离心率为,为椭圆的左右焦点,;分别为椭圆的长轴和短轴的端点(如图) .若四边形的面积为. (Ⅰ)求椭圆的方程. (Ⅱ)抛物线的焦点与椭圆的右焦点重合,过点任意作一条直线,交抛物线于两点. 证明:以为直径的所有圆是否过抛物线上一定点.
已知函数,,. (Ⅰ)当,求使恒成立的的取值范围; (Ⅱ)设方程的两根为(),且函数在区间上的最大值与最小值之差是8,求的值.
数列满足. (Ⅰ)若是等差数列,求其通项公式; (Ⅱ)若满足,为的前项和,求
已知三棱柱,底面为正三角形,平面,,为中点. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的正弦值.