某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须交月租费12元,另外,通话费按0.2元/min计.(1)写出每月应缴费用y(元)与通话时间x(min)之间的关系式;(2)某手机用户这个月通话时间为180 min,他应缴费多少元?(3)如果该手机用户本月预缴了100元的话费,那么该用户本月可通话多长时间?
如图,在四边形ABCD中,AB=AD,CB=CD.求证:∠B=∠D.
先化简,再求值:,其中a=2.
如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3).求证:(1)△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式
某商场计划购进冰箱、彩电进行销售。相关信息如下表:
(1)若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值。(2)为了满足市场需要求,商场决定用不超过9万元采购冰箱、彩电共50台,且冰箱的数量不少于彩电数量的。①该商场有哪几种进货方式?②若该商场将购进的冰箱、彩电全部售出,获得的最大利润为w元,请用所学的函数知识求出w的值。