(本题5分)列方程解应用题甲、乙两站相距480千米,货车与客车同时从甲站出发开往乙站。已知客车的速度是货车的2.5倍,结果客车比货车早6小时到达乙站,求两种车的速度各是多少。
如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.
我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:;(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究的最大值.
如图,二次函数 y = a x 2 + b x + c 的图象的顶点 C 的坐标为 ( 0 , - 2 ) ,交 x 轴于 A 、 B 两点,其中 A ( - 1 , 0 ) ,直线 l : x = m ( m > 1 ) 与x轴交于 D . (1)求二次函数的解析式和 B 的坐标; (2)在直线 l 上找点 P ( P 在第一象限),使得以 P 、 D 、 B 为顶点的三角形与以 B 、 C 、 O 为顶点的三角形相似,求点 P 的坐标(用含 m 的代数式表示); (3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点 Q ,使 △ B P Q 是以 P 为直角顶点的等腰直角三角形?如果存在,请求出点 Q 的坐标;如果不存在,请说明理由.
“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?
如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.