.如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线L与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
如图,在中,,点在线段上运动(D不与B、C重合),连接AD,作,交线段于. (1)当时,°,°;点D从B向C运动时,逐渐变(填“大”或“小”); (2)当等于多少时,≌,请说明理由; (3)在点D的运动过程中,的形状可以是等腰三角形吗?若可以,请直接写出的度数.若不可以,请说明理由。
如图,四边形中,,且,的周长为14 ,将平移到的位置。 (1)指出平移的方向和平移的距离; (2)求梯形的周长。
下图是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、……方程组n. (1)将方程组1的解填入图中; (2)请依据方程组和它的解变化的规律,将方程组n和它的解直接填入集合图中; (3)若方程组的解是,求m、n的值,并判断该方程组是否符合 (2)中的规律?
七(3)班学生参加学校组织的“绿色奥运”知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图. (1)频数分布表中a=___________,b=_____________; (2)把频数分布直方图补充完整; (3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本,二等奖奖励作业本10本.已知这部分学生共获得作业本335本,则一等奖和二等奖各多少人?.
如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F. (1)CD与EF平行吗?为什么? (2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.