利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?
(本小题10分) (1)在数轴上表示下列各数:0,–2.5,,–2,+5,. (2)将上列各数用“<”连接起来:___________ _____________________.
(本小题6分)把下列各数填入它所属的集合内: +3、-(-2.1)、-、-π、0、、-0.1010010001… 整数集合:{…}; 正数集合:{…}; 无理数集合:{…}.
(1)如图1,满足. ①求的值; ②若C(-6,0),连CB,作BE⊥CB,垂足为B,且BC=BE,连AE交轴于P,求P点坐标. (2)如图2,若A(6,0),B(0,3),点Q从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点Q运动时间为秒,过Q点作直线AB的垂线,垂足为D,直线QD与轴交于E点,在点Q的运动过程中,一定存在△EOQ≌△AOB,请直接写出存在的值以及相应的E点坐标.
如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=∠. (1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面两个问题: ①如图1,若∠BCA=90°,∠=90°,则BE CF; (填“>”、“<”或“=”); ②如图2,若0°<∠BCA<180°,请添加一个关于∠与∠BCA关系的条件 ,使①中的两个结论仍然成立,并证明这两个结论. (2)如图3,若直线CD经过∠BCA的外部,∠=∠BCA,请提出EF、BE、AF三条线段数量关系的合理猜想(不要求证明).
已知AB=AC,AD=AE,∠BAC=∠DAE,直线BD、CE交于点G, (1)如图1,点D在AC上,求证:∠BGC=∠BAC; (2)如图2,当点D不在AC上,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.