(本小题满分13分)平面直角坐标系中,点M的坐标是,曲线的参数方程为(为参数),在以坐标原点为极点、x轴的非负半轴为极轴建立的极坐标系中,曲线的极坐标方程为.(1)将曲线和化成普通方程,并求曲线和公共弦所在直线的极坐标方程;(2)若过点M,倾斜角为的直线l与曲线交于A,B两点,求的值.
定义在R上的函数满足对任意实数,总有,且当时,.(1)试求的值;(2)判断的单调性并证明你的结论;(3)设,若,试确定的取值范围.
如图,为多面体,平面与平面垂直,点在线段上,,,△OAB,△OAC,△ODE,△ODF都是正三角形。 (Ⅰ)证明直线; (Ⅱ)求棱锥的体积.
将一枚骰子先后抛掷两次,观察向上的点数,(1)求点数之和是5的概率;(2)设a,b分别是将一枚骰子先后抛掷两次向上的点数,求等式成立的概率。
在某次测验中,有6位同学的平均成绩为75分.用表示编号为的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩,及这6位同学成绩的标准差;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(1)根据茎叶图求这两个班的平均身高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取1同学,求身高至少为176 cm的同学被抽中的概率.