(本题10分)在Rt△ABC中,∠CAB=90°,AB=AC.(1)如图①,过点A在△ABC外作直线MN,BM⊥MN于M,CN⊥MN于N.①判断线段MN、BM、CN之间有何数量关系,并证明;②若AM=,BM=,AB=,试利用图①验证勾股定理;(2)如图②,过点A在△ABC内作直线MN,BM⊥MN于M,CN⊥MN于N,判断线段MN、BM、CN之间有何数量关系?(直接写出答案)
如图所示,已知点C(-3,m),点D(m-3,0).直线CD交y轴于点A.作CE与X轴垂直,垂足为E,以点B(-1,0)为顶点的抛物线恰好经过点A、C. (1)则∠CDE= ; (2)求抛物线对应的函数关系式; (3)设P(x,y)为抛物线上一点(其中-3<x<1-或-1<x<1,连结BP并延长交直线CE于点N,记N点的纵坐标为yN,连结CP并延长交X轴于点M. ①试证明:EM•(EC+yN)为定值; ②试判断EM+EC+yN是否有最小值,并说明理由
如图所示,D是以AB为直径的半圆O上的一点,C是弧AD的中点,点M在AB上,AD与CM交于点N,CN=AN.(1)求证:CM⊥AB;(2)若AC=2,BD=2,求半圆的直径.
如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.(1)求运动时间t的取值范围;(2)t为何值时,△POQ的面积最大?最大值是多少?(3)t为何值时,以点P、0、Q为顶点的三角形与Rt△AOB相似?
有两张相同的矩形纸片ABCD和A′B′C′D′,其中AB=3,BC=8.(1)若将其中一张矩形纸片ABCD沿着BD折叠,点A落在点E处(如图1),设DE与BC相交于点F,求BF的长;(2)若将这两张矩形纸片交叉叠放(如图2),试判断四边形MNPQ的形状,并证明.
某研究性学习小组,为了测量某池塘边A、B两点间的距离,让一架航模在直线AB的正上方24米的高度飞行,当航模位于点D处时,在A点处测得航模仰角为60°,5分钟后,当航模在点C处时,在B点测得航模仰角为45°,己知航模飞行的速度为每分钟45米,试计算A、B两点的距离.(结果精确到0.1米,参考数据:=1.41,=1.73.)