已知:如图, AF平分∠BAC,BC⊥AF, 垂足为E,点D与点A关于点E对称,PB分别与线段CF, AF相交于P,M.(1)求证:AB=CD,(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E. (1)当BC=1时,求线段OD的长; (2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
如图,已知为的直径,是的切线,为切点, (Ⅰ)求的大小; (Ⅱ)若,求的长(结果保留根号).
如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC. (1)求证:△ADC≌△ECD; (2)若BD=CD,求证:四边形ADCE是矩形.
在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程有两个相等的实数根,求△ABC的周长.
(1)x2+2x=1 (2)x(x﹣3)=x﹣3