已知(1)证明:(2)若在恒成立,求的最小值.(3)证明:图像恒在直线的上方.
已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为;为椭圆上的四个点。(Ⅰ)求椭圆的方程;(Ⅱ)若,且,求四边形的面积的最大值和最小值.
已知函数.(Ⅰ)若,试判断在定义域内的单调性;(Ⅱ) 当时,若在上有个零点,求的取值范围.
已知数列的前项和满足(Ⅰ)证明为等比数列,并求的通项公式;(Ⅱ)设;求数列的前项和.
如图,三棱柱的底面是边长为的正三角形,侧棱垂直于底面,侧棱长为,D为棱的中点。(Ⅰ)求证:平面;(Ⅱ)求二面角的大小.
为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从三个区中抽取6个工厂进行调查.已知区中分别有27,18,9个工厂.(Ⅰ)求从区中应分别抽取的工厂个数;(Ⅱ)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自区的概率.