(本小题满分13分)图2中的实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是 .(1)从正方形ABCD的四条边及两条对角线共6条线段中任取2条线段(每条线段被取到的可能性相等),求其中一条线段长度是另一条线段长度的倍的概率;(2)求此长方体的体积.
设二次函数,方程的两个根满足.且函数的图像关于直线对称,证明:.
已知a、b、c是实数,函数,,当时,. (1)证明:; (2)证明:当时,;
一个小服装厂生产某种风衣,月销售量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x件的成本R=500+30x元. (1)该厂的月产量多大时,月获得的利润不少于1300元? (2)当月产量为多少时,可获得最大利润?最大利润是多少元?
二次函数f(x)=px2+qx+r中实数p、q、r满足=0,其中m>0,求证: (1)pf()<0; (2)方程f(x)=0在(0,1)内恒有解.
如果二次函数y=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,试求m的取值范围.