(本小题满分13分)图2中的实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是 .(1)从正方形ABCD的四条边及两条对角线共6条线段中任取2条线段(每条线段被取到的可能性相等),求其中一条线段长度是另一条线段长度的倍的概率;(2)求此长方体的体积.
某种产品按质量标准分成五个等级,等级编号依次为1,2,3,4,5.现从一批产品中随机抽取20件,对其等级编号进行统计分析,得到频率分布表如下:
(I)若所抽取的20件产品中,等级编号为4的恰有3件,等级编号为5的恰有2件,求,,的值; (Ⅱ)在(I)的条件下,将等级编号为4的3件产品记为,等级编号为5的2件产品记为,现从这5件产品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件产品的等级编号恰好相同的概率.
已知函数 (Ⅰ)若函数在处取到极值,求的值. (Ⅱ)设定义在上的函数在点处的切线方程为,若在内恒成立,则称为函数的的“HOLD点”.当时,试问函数是否存在“HOLD点”,若存在,请至少求出一个“HOLD点”的横坐标;若不存在,请说明理由.
已知椭圆的中心在原点,焦点在轴上,经过点,离心率. (Ⅰ)求椭圆的方程; (Ⅱ)椭圆的左、右顶点分别为、,点为直线上任意一点(点不在轴上), 连结交椭圆于点,连结并延长交椭圆于点,试问:是否存在,使得成立,若存在,求出的值;若不存在,说明理由.
如图,已知平面平面,与分别是棱长为1与2的正三角形,//,四边形为直角梯形,//,,点为的重心,为中点,, (Ⅰ)当时,求证://平面 (Ⅱ)若直线与所成角为,试求二面角的余弦值.
已知数列为等比数列,其前项和为,已知,且对于任意的有,,成等差; (Ⅰ)求数列的通项公式; (Ⅱ)已知(),记,若对于恒成立,求实数的范围.