(本题6分)已知:抛物线解析式为:y=x2-4x+3 求:(1)抛物线对称轴. (2)抛物线的顶点坐标.
我们知道:对于任何实数,①∵≥0,∴+1>0;②∵≥0,∴+>0.模仿上述方法解答:求证:(1)对于任何实数,均有:2x2+4x+3>0;(2)不论为何实数,多项式3x2-5x-1的值总大于2x2-4x-2的值.
已知关于x的方程x2-2(k-3)x+k2-4k-1=0.(1)若这个方程有实数根,求k的取值范围; (2)若这个方程有一个根为1,求k的值;
阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-1=y,则(x2-1)2=y2,原方程化为y2-5y+4=0.①解得y1=1,y2=4当y=1时,x2-1=1.∴x2=2.∴x=±;当y=4时,x2-1=4,∴x2=5,∴x=±.∴原方程的解为x1=,x2=-,x3=,x4=-.解方程:(x2+1)2-(x2+1)-6=0.
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.
解方程.(1)2x(x+3)=6(x+3)(2)(2x-1)2=5(3)y2-y=12(4)2x2-5x+1=0