如图,小区规划在一个长56米,宽26米的长方形场地上修建三条同样宽的甬道,使其中两条与AB平行,另一条与BC平行,场地的其余部分种草,甬道的宽度为x米.(1)用含x的代数式表示草坪的总面积S= ;(2)如果每一块草坪的面积都相等,且甬道的宽为2米,那么每块草坪的面积是多少平方米?
已知抛物线经过点A(-3,0)和点B(5,0)且抛物线的顶点纵坐标为6,求抛物线的解析式。
(1)计算:;(2)解不等式:≥.
(本题12分)如图①所示,直线L:与轴负半轴、轴正半轴分别交于A、B两点。(1)当OA=OB时,试确定直线L的解析式; (2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,试说明MN=AM+BN。(3)当取不同的值时,点B在轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交轴于P点,如图③。问:当点B在 y轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值,若不是,说明理由。
(本题12分)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1) 直接写出甲骑自行车的速度 ;乙骑自行车的速度 ;(2) 求出点M的坐标,并解释该点坐标所表示的实际意义;(3) 若两人之间保持的距离不超过2km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.
(本题12分)已知:如图1,点D是边长为2的等边△ABC边BC所在直线上的一动点,从点B向C方向运动,以AD为边向右侧作等边△ADE。(1)连接CE,若点D在边BC上时,易知线段CE 、CD、AC三者之间的关系为CE+CD="AC;" 如图2当点D在C的右侧时,试探索线段CE 、CD、AC三者之间的数量关系,并说明理由。(2如图1,当点D从B运动到C时,①直接写出△CDE周长的最小值。②直接写出点E的运动路径长。(3)若将题目中条件“等边△ADE”改为“满足∠ADE=60°与等边△ABC的外角平分线交于点E”,那么CE与BD还相等吗?如图3请作出判断并给出说明。图1 图2 图3