(本小题满分10分)某校要进行特色学校评估验收,有甲、乙、丙、丁、戊五位评估员将随机去三个不同的班级进行随班听课,要求每个班级至少有一位评估员.(1)求甲、乙同时去班听课的概率;(2)设随机变量为这五名评估员去班听课的人数,求的分布列和数学期望.
三人独立破译同一密码,已知三人各自破译出密码的概率分别为,且他们是否译出密码互不影响。 (1)求恰有两人破译出密码的概率; (2)“密码被破译”与“密码未被破译”的概率那个大?
用分析法证明:.
已知,复数,则 (1)当为何值时,为实数; (2)当为何值时,为纯虚数.
已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0. (1)求a的值; (2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值.]
已知二次函数f(x)有两个零点0和-2,且f(x)最小值是-1,函数g(x)与f(x)的图像关于原点对称. (1)求f(x)和g(x)的解析式; (2)若h(x)=f(x)-λg(x)在区间[-1,1]上是增函数,求实数λ的取值范围.