已知椭圆=1(a>b>0)的离心率e=,过点A(0,-b)和B(a,0)的直线与坐标原点距离为.(1)求椭圆的方程;(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆相交于C、D两点,试判断是否存在k值,使以CD为直径的圆过定点E?若存在求出这个k值,若不存在说明理由.
已知函数,函数. (I)试求f(x)的单调区间。 (II)若f(x)在区间上是单调递增函数,试求实数a的取值范围: (III)设数列是公差为1.首项为l的等差数列,数列的前n项和为,求证:当时,.
某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施不能建设开发,且要求用栏栅隔开(栏栅要求在直线上),公共设施边界为曲线的一部分,栏栅与矩形区域的边界交于点M、N,切曲线于点P,设. (I)将(O为坐标原点)的面积S表示成f的函数S(t); (II)若,S(t)取得最小值,求此时a的值及S(t)的最小值.
已知等差数列满足:,该数列的前三项分别加上l,l,3后顺次成为等比数列的前三项. (I)求数列,的通项公式; (II)设,若恒成立,求c的最小值.
在四棱锥P-ABCD中,侧面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,ADC-900,AB=AD=PD=1.CD=2. (I)求证:BC平面PBD: (II)设E为侧棱PC上异于端点的一点,,试确定的值,使得二面角 E-BD-P的大小为.
已知函数. (I)若函数为奇函数,求实数的值; (II)若对任意的,都有成立,求实数的取值范围.