(本小题13分)为了保护环境,某工厂在政府部门的鼓励下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳可得价值为20万元的某种化工产品.(Ⅰ)当时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不会亏损?(Ⅱ)当处理量为多少吨时,每吨的平均处理成本最少?
如图所示,直三棱柱,底面中,,棱分别是的中点.(1) 求的长;(2) 求异面直线所成角的余弦值.
已知命题:方程有两个不等的负实根;命题:方程无实根,若“p或q”为真命题,“p且q”为假命题,求实数m的取值范围
(本小题满分10分)已知函数(1) 当时,求函数的最大值;(2)当时,设点、是函数的图象上任意不同的两点,求证:直线的斜率.
(本小题满分10分)设给定数列,(1)求证:(2)求证:数列是单调递减数列.
(本小题满分10分)解关于的不等式: