已知关于的不等式的解集为.(1)求集合;(2)若,求函数的最值.
有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A,B两个班各被随机抽取5名学生接受问卷调查,A班5名学生得分为:5、8、9、9、9;B班5名学生得分为:6,7,8,9,10.(1)请你估计A,B两个班中哪个班的问卷得分要稳定一些;(2)如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.
(本小题满分12分)已知函数,且给定条件.⑴求的最大值及最小值;⑵若又给条件,且是的充分条件,求实数的取值范围。
已知是定义在上的函数,其图象与轴交于三点,若点的坐标为且在和上有相同的单调性,在和上有相反的单调性.(1)求的值;(2)在函数的图象上是否存在一点,使得在点的切线斜率为?若存在,求出点的坐标;若不存在,说明理由.
(不等式选讲)用数学归纳法证明不等式:(且)
(本小题满分16分)已知⊙由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足 (1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程。